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A theoretical and experimental investigation has been conducted of the behavior 
of steady low-density hypersonic flow over a mute-width flat plate. 

The theoretical analysis, previously hampered by stability problems which dictated 
small streamwise increments, has been modified within the framework of the original 
formulation of Rudman and Rubin, in such a manner that larger streamwise incre- 
ments are now possible without severe stability restrictions. This has been made possible 
by employing an alternating directional implicit numerical scheme developed by Peace- 
man and Rachford, such that the R&man-Rubin analysis is now extendable downstream 
into the strong interaction region with smaller computational times. 

Simultaneously, an experimental program was conducted to compare with the 
theoretical predictions. Measurements of pitot pressure and hot wire output (mass flow 
and temperature profiles) were obtained at two streamwise locations for several different 
plate widths. All tests were conducted for a Reynolds number of 3OO/inch and a tempera- 
ture ratio (;i;,,K?‘~,,) of 0.3. Protiles of density, velocity, and temperature ratios in the 
merged layer were obtained and compared to the theoretical analysis. Good agreement is 
shown to exist through the merged layer region. 
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I. INTRODUCTION 

Sustained flight at hypersonic velocities and extremely high altitudes is of 
significant current interest with respect to the space transportation system. The 
design and development of practical configurations in this flow regime is based 
on the ability to analyze and predict three-dimensional flow field effects. Heretofore, 
both experimental and analytical studies have concentrated mainly on two- 
dimensional or axisymmetric bodies in the rarefied flow regime, as typified by [l, 23; 
for example. In these references, one set of equations are postulated which are 
valid throughout the viscous-inviscid layer from the body surface to the free 
stream. As a result, a first order approximation to the full Navier-Stokes equations 
is obtained, resulting in a parabolic partial differential equation; this makes 
possible the use of finite-difference initial-value techniques to obtain the Bow 
field description. 

This approach is also adopted in the present study; however, an alternating 
directional implicit scheme is utilized in formulating the finite-difference equations 
for the three-dimensional flow. Previous investigations using explicit finite- 
difference techniques have been shown to be laborious for large core problems 
(such as a three-dimensional configuration) [3,4] and, consequently, one might 
attempt to convert to a fully implicit technique. However, such a technique would 
require the solution of an (L&J) by (&V) system of simultaneous algebraic equations 
at each streamwise step. Here, M and N represent the number of mesh points 
in each of the lateral directions (u and zj and E represents the number of inde- 
pendent variables. No recursion formulas are available for this type of technique 
and for large grid areas, iterative techniques are usually required. The alternating 
directional implicit technique is found to eliminate these difficulties. This technique 
requires the assumption of an initial solution at a given streamwise station. The 
conditions at the next station are obtained by representing y derivatives implicitly: 
and z derivatives explicitly. In so doing, unknown variables are solved for 
simultaneously along lines of constant y. The solution at the next streamwise step 
is obtained by replacing 4’ derivatives with an explicit formulation and z derivatives 
with an implicit scheme. This procedure continues downstream, altern.ately 
swtiching the implicit direction. This technique has been shown to be stabie and 
convergent for linear, parabolic, second-order equations of the heat conduction 
type; however, the present analysis represents the first attempt to extend this 
numerical scheme to include a system of nonlinear, second-order partial differential 
equations in five unknowns. At present, it appears to be the most effective method 
for solving rectangular regions with a reduction in computational time of up to 
twenty-five times that of the identical explicit representation, and seven times 
over a Crank-Nicolson implicit scheme [4]. In addition, since one solves for 
one complete row or column at a time, a more tractable algorithm is produced. 
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This technique also permits a constant streamwise step size not subject to 
the stringent stability requirements of an explicit formulation, thereby allowing 
downstream integration at a much faster rate. As a result, three-dimensional 
Aow-field calculations for configurations of practical interest, such as delta 
wings, waveriders, angle of attack effects, etc., can be readily obtained. With 
presently available computational schemes, these flow fields would require 
prohibitively long computing times. 

The present study utilizes the finite-width flat-plate configuration for several 
reasons. First, an explicit analysis has been previously computed, and thus the 
relative efficacy of .the two approaches can be compared. Second, this is a basic 
three-dimensional configuration which exhibits gradients in all coordinate direc- 
tions, and can be modified to produce more practical flight configurations (e.g., 
altering the leading edge angle produces a typical delta wing). 

II. NLJMERICAL FORMJLATION OF EQUATIONS 

A detailed discussion of the reduction of the complete Navier-Stokes equations 
to the approximate form utilized in the present study is given in [1, 2, 5-j. Briefly, 
however, Rudman and Rubin started with the governing Navier-Stokes equations 
nondimensionalized with respect to local reference values. They postulated that 
if the shock layer on a slender body is considered small, such that the normal 
gradients are much larger than either of the two lateral gradients (this ratio being 
denoted as S-l), one may write a first order approximation to the full Navier- 
Stokes equations. An exception occurred in the energy equation where S2 terms 
were retained in order to retain a nontrivial solution [l, 51. Simultaneously, a 
second parameter A” = Tref/yibfa2 appeared in the expanded equations. Since 
Tref represents the order of magnitude of the local temperature, one can easily 
show that 0.05 < A2 < 0.12 depending upon the wall temperature (that is, cold 
or adiabatic wall) and, therefore, may also be considered small. Consequently, 
A2 terms were also neglected which leads to the elimination of the streamwise 
pressure gradient. The consequences of this result are discussed in [l, 51. Within 
this approximation, one can treat the x-momentum equations as a parabolic 
partial differential equation in which the inertia-viscous terms balance. The final 
equations for the steady, compressible viscous flow are repeated here for con- 
venience: 

Continuity: 
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x-Momentum: 

pwx + pvug f plIwz 

y-Momentum: 

pLl1~~ + pw, + p?m, 

z-Momentum: 

Energy: 

PUT, i POT, $ pw T, 

State: 

P = PC 

where p, p, T, and u are nondimensionalized with respect to their respective free 
stream values, p with ,Li,& , v and w with i&6, x with Z, and y and z with 8. 
Note that 6 = 6/E = (y1/2M,)-1 and E = yM,3(~,/p,iQ. Also, dimensional 
quantities are barred (-), whereas nondimensional quantities are unbarred I ). 

An alternating directional implicit finite difference scheme is now used to 
develop the difference equations corresponding to the above set of governing 
equations. 

The methodology of the technique is as foliows: first assume -that the t, i - I, 
i - 2,... planes are all known. It is desired to extend the solution downstream LO 
the i + 1, i + 2,... planes. Using the coordinate system shown in Fig. 1, the i 
difference formulas are represented by a standard forward difference, namely, 

( ) * \ i+1 
= d;Fl - FL 

8X j,J; 4x 

j81/8/2-7 
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However, for planes in the direction of increasing X, this technique alternately 
takes y derivatives implicitly and z derivatives explicitly. That is, 

and 

(Implicit) 

(Explicit) 

EXPLICIT DIRECTION 

IMPLICIT OIRECTION 

EXPLlClT DIRECTION EXPLICIT DIRECTION SHOCK LAYER 

FIG. 1. Physical and numerical coordinate systems. 

for the i f 1 plane. In the i + 2 plane, the difference equations for x remains the 
same; however, the 4’ derivatives become explicit and the z derivatives implicit, 
namely, 

(Explicit) 
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and 

(implicit) 

Thus, one complete row or column is solved at a time and hence only olM or aN 
simultaneous algebraic equations appear. Several items to be noted in the applica- 
tion of this technique are: (1) each streamwise increment x must remain constant 
for each advancement; (2) lateral increments, dy and LIZ, must remain equal to 
each other throughout the entire calculation since implicit and explicit directions 
are continually being interchanged; and (3) unilateral repitition in any one direction 
results in an unstable solution. 

At present, this technique has been applied only to rectangular grids and its 
apparent success in comparison to other schemes has not been demonstrated for 
more general classes of equations and/or grid descriptions. 

As an example of the type and form of the difference equations that are handled, 
the x-momentum equation for y implicit, z explicit is shown below: 

where 

and subscripts 

4 = i,j+ 1,k 
5 = i,j,k 
6 = i,j- 1,k 
8 = i,j,k+ I 

11 = i, j, k - B 

Note the dependence of ujfi upon the values of u above and below it; this grouping 
of three mesh points per equation will be shown later to be advantageous. 

Since there are five independent variables, five difference equations are required 
at each mesh point to describe adequately the flow field. For clarification, the 
following description of the algorithm used to solve the present problem was 
representative of the overall ADI technique used. 
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First, assume that the initial gridwork consists of five mesh points in each of 
the lateral directions, y and z, and that the first unknown plane, i + 1, is three, 
(planes 1 and 2 are known initial conditions). For i + 1 = 3, take y as the implicit 
direction. The calculation is started at li = 2 and the interior points, j = 2, 3: 
and 4. For each of these three points, five difference equations can be written 
corresponding to the continuity, x-momentum, y-momentum, z-momentum, and 
energy equations. The five difference equations for j = 2 include unknown depen- 
dent variables at points 1 and 3. Similarly, the five difference equations for point 3 
include unknowns at points 2 and 4 and so forth. These are the groupings of three 
mesh points that were referred to previously. 

It is now necessary to specify the boundary conditions at points 1 and 5. Implicit 
difference equations are used such that a boundary equation at point 1 includes 
unknowns from points 2 and 3. The exact nature of the boundary condition used 
depends, of course, upon the geometry considered. Also, for the present configura- 
tion, a lateral gradient test was used to verify that the three-dimensional effects 
of the geometry had damped out. 

One now has a collection of twenty-three difference equations for the five 
points of k = 2, both o1 and v5 being specified as zero, for purposes of this example. 
All twenty-three equations are linear and simultaneous, suggesting a matrix type 
solution to solve for the unknowns. It is here that the three mesh point dependency 
characteristics of the alternating directional implicit scheme became important. 
It can be shown that a band structure matrix can be formed by careful arrangement 
of the system of equations. This provides the possibility of utilizing an IBM 
scientific subroutine package denoted GELB which makes use of a Gaussian 
elimination technique to solve the system of equations. Not only does this sub- 
routine decrease the amount of storage required by the program (by not dimen- 
sioning the two null corners of the matrix), but it also increases the program’s 
overall speed and accuracy. The subroutine GELB solves a system of simultaneous 
linear algebraic equations by means of a Gaussian elimination technique that 
pivots the column elements only in order to preserve the band structure of the 
resulting coefficient matrices. In order to obtain initially a band structure, however, 
one must order the equations in the following manner: 

y Implicit 

1. y-momentum equation; 
2. x-momentum equation; 
3. energy equation; 
4. z-momentum equation; 
5. continuity equation. 

z hplicit 

I. z-momentum equation; 
2. x-momentum equation; 
3. energy equation; 
4. y-momentum equation; 
5. continuity equation. 
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In so doing, one can form the table shown in Fig. 2. This is a representative 
diagram for plane 3, k equal to 2 and JMAX equal to 5. Note that, since o1 and oj 
(y-momentum equation) are both specified as zero, for the purposes of this 
example, they do not appear in the coefficient matrix. For this particular case, 
we have ten bands of elements above and nine bands below the principal diagonal 
and hence only need to dimension the elements in these bands. It is obvious that 
for large values of JMAX, the savings in storage space of this technique over 

J=I 
/ 

J =2 

J=4 

J=5 

JMAx= 5 
K =2 

X DENOTES LOCATIQN 
OF COEFFICIENT 

FIG. 2. GELB band structure chart. 

another become sizeable. For example, if JMAX is equal to 50, the dimensions 
required for the coefficient matrix of GELB is 5153 whereas in a regular matrix 
inversion subroutine one would require 61,504 locations. Also, it is observed that 
for JMAX = 50, the order of the matrix is 5JMAX-2 or 248, and therefore, 
very large. It was found in some exploratory studies initially conducted to determine 
the most efficient and fastest method of solution of a system of difference equations, 
that GELB was three times as fast as a regular matrix inversion technique for a 
given tenth-order matrix. In addition, it was found that this speed factor was 
nonlinearly increasing in favor of GELB as the order of the matrix increased. 
This particular equation systematization, therefore, proved to be extremely 
beneficial. 

The analysis is then reduced to the solution of large systems of linear algebraic 
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equations. The form of the boundary conditions and the specification of the 
initial conditions are discussed below so that the mathematical problem is com- 
pletely posed. 

The numerical scheme was then applied to the hypersonic, rarefied, viscous 
flow over a finite-width flat plate. This is a basic configuration upon which other 
more complicated three-dimensional geometries may be based. Accordingly, 
therefore, one may write the following set of boundary and initial conditions. 

Boundary and Initial Conditions 

Slip boundary conditions are enforced on the surface of the plate, namely, 

@ y = 0; z < h/2; 

u = Au, ; IV = hw, + 3(8n-T)-1/2Tz ; 

v = 0; T= Tw++^) T,. 
r+1 0. 

@ y = 0; z > h/2: 

u, IV, T, p are symmetric; 
v is antisymmetric 

@z=O;y>O: 

u, v, T, p are symmetric; 
IV is antisymmetric. 

@x=0: 

freestream conditions are enforced; 

and fmally when 

(y” + z”) 3 03: 

v-+0 u 

1v -+ 0 T -+l. 
P 1 

The rate at which the numerical solution converges toward the actual physical 
flow field depends to a degree upon the accuracy of the initial conditions and the 
streamwise step size. 
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One of the major objectives of this study was the determination of the effective- 
ness of an alternating directional implicit technique as a numerical tool in solving 
three-dimensional hypersonic-interaction problems. For this reason, initial calcu- 
lations were duplications of earlier explicit runs to determine the speed and 
accuracy of the present technique. In particular, the Mach 25 case of [Z] was 
rerun for comparison. A flat plate of 40 mean free paths in width was used to 
limit the large number of lateral grid points required to envelop adequately the 
disturbance region. The explicit calculation of [2] commenced at the centerline 
where symmetry conditions were enforced and then proceeded laterally and 
normally until the .flow field parameters approached their freestream values to 
within a preset limit. 

It took approximately forty minutes to reach 7 = 0.30 which corresponds to 
three plate widths downstream of the leading edge. To test the accuracy of the 

0 AD I } CONSTANT fix 

6t P 

3.0 2.0 1.0 0.6 0.6 0.4 

v 

3.0 

2.c 

rime 
(hrs.l 

FIG. 3. Computational time comparison. 
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numerical result, the streamwise step size was then cut by a factor of six. It took 
almost two and one-half hours to then reach the same location. It was found that 
the difTerence in results between the two calculations varied by five to ten percent. 

In applying the alternating directional implicit technique, only 15 minutes 
were necessary to reach 5 = 0.35 (Fig. 3). This time saving was seen to increase 
as V decreased (or x increased). Moreover, the ADI technique was applied using 
a constant Ax. As the weak interaction regime was approached, the axial gradients 

- EXPLICIT REEB) 
- - - A.D.I. 

0. I I I I 

0.1 0.2 0.4 0.6 0.6 1.0 

v 

FIG. 4. Comparison of the centerline pressure and maximum density calculations. 

decrease in strength and it is possible to increase Ax, thereby further decreasing 
the amount of time required to reach a given streamwise station; all times are 
referred to a CDC 6600. For a comparison of the accuracy of the ADI method 
and the explicit calculation, the centerline pressure and maximum density levels 
for both calculations are shown in Fig. 4 while the surface velocity is shown as 
a function of the lateral coordinate (at V = 0.35) in Fig. 5. The centerline tem- 
perature profile for V = 0.35 is also shown and compared to the explicit calcula- 
tions. The results of the AD1 calculation are seen to agree within approximately 
3$ percent with the explicit calculations for Ax/G, indicating that the ADI technique 
gives the same degree of accuracy in less computational time than the explicit 
scheme. The numerical solution to the governing equations was found to be 
highly dependent upon the initial conditions ,used for r > 0.45. Therefore, no 
conclusions can be drawn from the analysis for higher values of 7, where it is 
observed that the two techniques yield different results. 
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I.2 r- EXPLICIT (RUB1 i’:O.357 
--- A0.l. i=O.352 

I -SIDE EDGE 

01 I 'A 
E 0.4 0.6 1.2 hia= 25 

2 Tw/Ts(D 10.15 

fsm= 3600“R 

y =I.4 
o- =0.75 

L II =4oxa, 

0.4 
-EXPLICIT (REE 61 

i=o.357 
- - - A.D. I. v = 0.352 

0 8 16 24 32 40 

T 

FIG. 5. Comparison of the slip velocity and centerline temperature profiles. 

III. EXPERIMENTAL MEASUREMENTS 

In order to evaluate the validity of the theoretical approach, an experimental 
program was initiated in which data was obtained and compared to the theoretical 
predictions. The flow environment was obtained in a unique fashion using a double 
nozzle blowdown tunnel; that is, a secondary nozzle placed in the test section of 
a larger blowdown tunnel. The double nozzle facility at the Polytechnic Institute 
of Brooklyn achieves a Mach number of 5.1 at a Reynolds number of 300jinch. 
For a two-inch model, this constitutes values of the rarefaction parameter 
(v = ,WJv%i) between co and 0.2. It is interesting to note, in addition, that 
since the Mach number is so low, a sizeable strong interaction region never 
develops; instead the merged layer asymptotes into the weak interaction regime. 

A two-dimensional flat plate model was investigated first in order to obtain 
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data for the “infinite” width plate. This model configuration was obtained by 
stretching a section of shimstock across the tunnel test section. In so doing, it was 
possible to eliminate the end effects. 

The finite-width flat plates were made of the same 0.005” shimstock material 
and were supported in a needle holder attached to a thicker sting. The tests were 
conducted on two plate widths, namely 14” and 3/4”. On all plates, symmetry 
tests were run to ascertain any angle of attack effects which were found to be 
nonexistent within measurement accuracy. 

The diagnostic tools used in determining the local flow conditions are pitot 
probes and the hot wire anemometer, which provided mass flow and temperature 
profiles, using the technique described in [6]. The details of the data acquisition 
and data reduction procedures, in addition to the complications and general 
problems of using hot wire anemometry in low density flow fields, are discussed 
at length in [7]. 

IV. NUMERICAL AND EXPERIMENTAL RESULTS 

The numerical analysis was then applied to the experimental test conditions 
for the present study. In Fig. 6, the predicted maximum density ratio along the 
centerline of the various width plates is presented as a function of 7. The two- 
dimensional theory of [1] is also shown. It is noted that data for the h = 1Q inch 
width plate is identical to the two-dimensional curve until a value of v = 0.40 
is achieved where the calculation was terminated. Thirty-four lateral points were 
required to specify this plate width and since additional points were required to 
envelop the complete disturbance region, the storage limitations of the computer 
were exceeded at r = 0.4. It took approximately one hour to reach this station. 
Note that for these test conditions, (namely lur, = 5.15, Re,/ft. = 4.62 x 103) 
the effect of the initial conditions did not extend beyond r = .52 as seen in Fig. 6. 

Also shown are two additional calculations corresponding to finite plate widths 
of 314 inch and 318 inch. The 314 inch plate results are seen to coincide with the 
two-dimensional data until v = 0.45. At this point, the peak density for the narrow 
plate starts to decrease below the two-dimensional value. The peak density for 
the smallest plate width investigated (h = 318”) was found to diverge from the 
two-dimensional curve very close to the leading edge; the three-dimensional 
lateral relief is significant even before the effects of the initial conditions have died 
out. The maximum density level for this configuration remains almost constant 
in the downstream direction, never reaching the Rankine-Hugoniot value. This 
calculation required fourteen minutes to reach 5 = 0.275. 

Of particular interest are the results presented in Fig. 7, where the surface 
pressure is shown as a function of lateral position normalized with respect to the 
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plate width. It is observed that the pressure level remains fairly constant over 
roughly 50 “/;; of the plate width. Even though the pressure is the most sensitive 
parameter associated with the lateral relief effect, the lateral pressure gradient is 
extremely small. It is noted, for example, for h = 3/S” that the difference between 
the maximum and minimum values of the surface pressure is only 15 76. EIowever, 
the actual level of the centerline pressure is well below its two-dimensional counter- 

-I 

i I 

_ Kz5.15 
Tw/Tm = 2.0 

Ts& 14509 
Y =I.4 

I u=o.75 I 
2 = 1.0 IN 

OF I 
FIONS 

\ -1 

LEAO!NG 

EOGE 

1 

z=O.JiN. I 

FIG. 6. Maximum centerline density variation for different plate widths. 

part. It, therefore, becomes evident that the experimental investigation of two- 
dimensional models in merged layer flows must be carried out at very small 
values of s/h if truly two-dimensional values are to be obtained, since variations 
in the pressure level observed in the lateral direction are within the experimental 
accuracy of most test results In Fig. 8, the maximum value of mass flow overshoot 
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FIG. 7. Lateral surface pressure variation for different plate widths. 
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FIG. 8. Maximum centerline mass flow variation. 
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at the centerline of a finite width plate was normalized with respect to its counter- 
part in the two-dimensional case. In effect, the streamwise location is held constant 
and the plate width systematically decreased. It is obvious that l/h is not the 
proper similarity parameter to use in the investigation of this type of lateral reiief 
effect; the rarefaction parameter must also be considered. Also, the relief effect is 
more pronounced for the lower values of r at the same value of l/lz, which one 
might expect intuitively. The data from the experimental program is also shown 
in Fig. 8 for comparison; the magnitude of the peak mass flow levels are seen to 
agree reasonably well with the theoretical results. 

V. CONCLUDING REM.RKS 

A theoretical analysis and an experimental program has been conducted on 
the behavior of merged layer flow over a finite-width flat plate. A numerical 
scheme has been successfully applied using an alternating directional implicit 
(ADI) technique in which significant decreases in computational times are achieved 
in comparison to other current approaches. Experimental measurements have also 
been obtained and overall agreement between the theoretical results and. the 
experimental data are quite good. The following conclusions are drawn: 

(I) The alternating directional implicit scheme has significant utility in the 
numerical investigation of three-dimensional, hypersonic, viscous flow fields. 
Further study will be required, however, to refine the general approach and 
decrease computer storage requirements. 

(2) The low density measurements obtained appear consistent with the 
theoretical predictions. 

(3) Experimental, two-dimensional A ow field investigations using finite width 
models must be performed with extreme care. The results presented herein indicate 
that the presence of small lateral gradients are not sufficient to insure two- 
dimensionality in merged layer flows. 
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